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The structure of a dislocation network in a crystal boundary depends, among other parameters, on the 
two crystal structures and their relation, i.e. the linear transformation leading from one crystal lattice to 
the other. For the same transformation, the structure of the network is related to the crystal structure. 
The link between the transformation and the many possible dislocation networks is described by a theorem 
which states that the displacement field of the linear transformation in the boundary can be described in 
an infinite number of ways by continuous dislocation distributions. The discrete dislocations are then 
obtained by grouping the continuous dislocations. The O-lattice theory is discussed in relation to these 
new aspects, particularly with respect to the features which tend to be conserved in the boundary. A special 
discussion is given of the case where a common crystallographic axis, without the relaxation pattern being 
periodic, represents the preferred state. 

1. I n t r o d u c t i o n  

Two crystals joined at a boundary can be considered as 
being geometrically related by a linear transformation, 
which, in the general case, consists of a translation part 
plus a homogeneous transformation, such as for ex- 
ample a rotation, shear, expansion etc. We discuss for 
the moment the homogeneous part and investigate 
transformations which conserve the number of dimen- 
sions, i.e. those which image a three-dimensional space 
(crystal) again in three dimensional space. Hence, pro- 
jections are excluded. 

A homogeneous transformation leaves the origin 
unchanged. Outside the origin it produces a 'displace- 
ment field'. Any point, situated where it was before the 
transformation had acted (starting point), is related to 
a point after that action (end point). The field of all the 
vectors from the starting point to the end is the 'dis- 
placement field'. 

By means of the O-lattice method [(Bollmann, 1970, 
further referred to as (I)] a boundary between two 
crystals can be represented by a dislocation network. 
The problem of the present paper is to find the link 
between the continuous displacement field and the 
discrete dislocation network in the boundary. Take 
the case of the displacement field of a small rotation 
(twist boundary); this displacement field is unique and 
well defined. However, depending on the crystal struc- 
ture, the dislocation network can be square, hexagonal, 
rectangular, etc. We shall show that the link between 
the displacement field and the dislocation network is 
given by the possibility of representing the displace- 
ment field as combinations of continuous dislocation 
distributions. The discrete dislocation network is then 
achieved by grouping the continuously distributed dis- 
locations. 

Once this relation between displacement field and 
dislocation network is established, the O-lattice meth- 
od will be discussed from this new point of view. 

A theory of continuous dislocation distributions has 
been developed among others by Bilby, Bullough & 
Smith (1955), and by Kr6ner (1958). The present ap- 
proach has been developed independently of that work. 

2. T h e o r e m  o f  c o n t i n u o u s  d i s l o c a t i o n  d i s t r ibut ions  

2.1. The displacement field 
The displacement field (T) of a homogeneous linear 

transformation A [rank (A)=3] can be represented 
either with respect to the starting point (s) [ ( f ) =  final 
point)]: 

xtf)=Ax (s) (2.1) 

T Is) =(A - I) (2.2) 

x Is) + (A - l ) x  (s) = x (f), (2.3) 

or with respect to the final point (f):  

T ~s) = (I - A - 1) (2.4) 

x ~s)- (I - A - 1)x~I) = x ~s). (2.5) 

This second representation is needed in the O-lattice 
theory and will be used throughout this paper. 

2.2. The meaning of a continuous dislocation 
distribution 

As is well known, a moving dislocation line acts as a 
translation operator. The Burgers vector, the sign of 
which is related to the line sense, can be represented as: 

t ") =uf~b k (i= 1,2; k = 1.2.3) (2.6) 

where t ") is a translation vector either in crystal 1, 
(i = 1) or in crystal 2 (i = 2). The u[ ~) are the three unit 
vectors of the respective crystal unit cell, and b ~ are the 
dimensionless coordinates of the translation vector. 
These coordinates are those which are conserved in 
dislocation reactions and hence form 'the Burgers 
vector', while the vectors t ") are the 'local representa- 
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tions of the Burgers vector' in either crystal (Bollmann, 
1974). The movement rule [(I), p. 48] can be formulated 
for a dislocation moving in a grain boundary, in the 
following way. 

A moving dislocation separates the space virtually 
into two parts and translates one part with respect to 
the other. If ! is the line sense and v is a vector pointing 
in the direction of the dislocation movement, the 
vector m: 

m = 1 x v (2.7) 

marks that part which is translated by its local repre- 
sentation of the Burgers vector, while the other part is 
kept fixed. 

Hence, a moving dislocation produces a relative 
shift in its wake, up to the location where it stops. A 
further dislocation produces an additional displace- 
ment up to its end position, etc. Hence, a series of dis- 
locations produces a stepwise displacement, Fig. l(a). 

A continuous displacement can be considered as a 
limiting case of the discrete sequence of dislocations, 
where the dislocation spacing as well as the Burgers 
vectors become infinitesimal. Here, the Burgers vector 
has to be defined as displacement per unit band width 
of dislocations, Fig. l(b). The proposed theorem is now 
the following. 

Theorem.  The displacement field in an interface be- 
tween two bodies, the orientation and structure of 
which are related by a homogeneous linear transfor- 
mation, can be represented in an infinite number of 
ways by the action of different continuous distributions 
of infinitesimal dislocations. 

I 
d. _L .L .1_ .L .L 

/ 
(b) 

Fig. 1. (a) Displacement, d, as introduced by incoming dislocations. 
(b) Displacement produced by a continuous set of dislocations. 

The displacement field produced by one continuous 
distribution of straight, 'equally spaced' dislocations 
between the state before the dislocations have been 
present and that after the dislocations have run-in 
from both sides up to the origin is actually the displace- 
ment field of a general shear transformation. This 
shear transformation leaves an undisplaced line (plane) 
through the origin and produces a displacement pro- 
portional to the distance from that line (plane). Hence, 
the proof of the theorem is to show that the displace- 
ment field of any dimension-conserving homogeneous 
linear transformation can be represented in an infinite 
number of ways as different sums of displacement 
fields of shear transformations. 

The general form of a shear transformation is 

i i (2.8) hk -= (~k 71_ 1)ink 

with 6/k = unit matrix, vi= shear vector, ni = shear plane 
normal (unit vector). 

The inverse shear transformation is a shear too, with 
the same shear plane and the shear vector w~: 

w i - - .  (2.9) 
(1 + vknk) 

The Einstein convention is applied here which 
states that, if in a product the same index (k) appears 
in the upper and the lower position, the product is to 
be summed over that index 

3 
t~knk =-- E v k n k = V l n l  -t-/)2n2-t-/)3n3 • (2.10) 

k=l  

The displacement field of a shear transformation 
(which we abbreviate to the term 'shear field'), given by 
( I -  H -  1) (referred to the end point of the displacement 
vector) has the form: 

dig = W i n k  . (2.11) 

Hence, in a two-dimensional case, in matrix form the 
decomposition of the displacement field of the given 
linear transformation A, i.e. of T = ( I - A - 1 )  into two 
shear fields is given by: 

1 1 1 2 

2 1 kW21l 2 w2n2) k,t 2 t2) (2.12) kwi,,i w,.2) + = 

i the ith component of the ruth shear vector and with Wr,~ 
n~' the kth component of the ruth shear-plane normal. 

In the general index notation the decomposition 
becomes: 

wi  . m ,i  (2.13) mrlk ~ t k • 

This expression, however, can also be interpreted as 
the following matrix product:  

wU - 'U (214) 

where the column vectors of the first matrix are the 
shear vectors wm and the row vectors of the second 
matrix the shear-plane normals, n m, which shows that 
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the shear vectors and the shear-plane normal can be 
collected in different matrices. 

In the general three-dimensional form the indices i 
and k can acquire the values i=  1,2, 3 and k = 1,2, 3 and 
the index m can be an arbitrary number. Then the 
matrix W with m columns and three rows is multiplied 
by the matrix N with three columns and m rows. If the 
shear planes (vectors n) are given, and hence the matrix 
N, (2.14) furnishes nine equations for the 3m unknown 
components of the shear vectors. 

The compatibility of the equations has to be studied 
for each case. For example, if a rotation field is repre- 
sented by two shear fields the shear planes have to pass 
through the rotation axis. If, however, it is represented 
by three shear fields with non-coplanar normal vectors, 
the shear vectors Wm prove to be coplanar on the plane 
perpendicular to the axis of rotation. They are uniquely 
determined. Further, a decomposition of a rotation 
field into three shear fields with the shear planes passing 
through the rotation axis leaves the freedom of choice 
of one of the shear vectors, where the shear vectors do 
not have to be coplanar. 

The minimum number of shear fields needed to 
compose the displacement field of a linear transforma- 
tion A is the rank of T, i.e. for example, if A is a three- 
dimensional expansion, then at least three shear fields 
are needed. For a rotation two of them are sufficient 
and the case of A being a shear transformation is 
trivial. However, even a shear field can be composed of 
several other shear fields. An example of the decom- 
position of a rotation field into two shear fields and 
hence into two continuous dislocation sets is given in 
Appendix A and Fig. 2. 

We do not explore the problem mathematically to 
its limits. The statement of the theorem is proved by 
showing that there exists actually an infinite multitude 

of decompositions of a field of a linear transformation 
into shear fields because of the freedom of choice of the 
shear planes and eventually also shear vectors. 

The displacement field of a transformation A is three- 
dimensional and so are the shear fields. The continuous 
dislocation distribution, however, comes into being 
the moment an interface is chosen, where one side of 
the interface is in the starting position and the other 
side in the final position of A. The sign of the disloca- 
tions, i.e. the coupling between the line sense and the 
orientation of the Burgers vector is determined by 
which side of the interface is chosen for crystal 1 (and 
for crystal 2, respectively). 

In the case of a non-homogenous transformation, 
the translation part is represented by a dislocation 
which has swept the whole area of the interface and 
hence has translated one crystal with respect to the 
other in addition to the remaining continuous disloca- 
tion distribution which represents the homogeneous 
part of the transformation. It is to be expected that the 
theorem will also hold for 'locally linear' distorted 
transformations. Here, however, the 'continuous' dis- 
location sets will not be straight and will no longer be 
of constant density. 

We shall now discuss the O-lattice theory in the light 
of our theorem. 

3. Discussion of the O-lattice theory with respect to the 
continuous dislocation distributions 

It is to be pointed out at the beginning that the mathe- 
matical machinery of the O-lattice theory [-as given in 
(I)] stays unchanged by these new aspects. However, 
the whole context becomes wider and more trans- 
parent. 

The O-lattice theory, which is a geometrical theory 

= -I- 

S H E A R  
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DISLOCATION 

SETS 

Fig. 2. Decomposition of a rotation field into two shear fields and correspondingly into two continuous sets of dislocations. 
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of the structure of intercrystalIine boundaries, is ap- 
plied on two levels, which are distinguished by the local 
conservation of certain structural features. On the 
primary level it is the crystal structure itself which is 
locally conserved and on the secondary level it is a 
whole relaxation pattern. 

3.1. The primary level 
In order to make our ideas more concrete we discuss 

the problems with examples. 
As a first example, we imagine the case of a twist 

boundary, (0 = 10 °, [001]), in the hexagonal structure 
with lattice constant a. The standard O-lattice proce- 
dure is to start with the perfect crystal, formulate the 
transformation A (the 10 ° rotation), then solve the 
O-lattice equation 

(] - -  A - 1 ) x ( ° )  = b (L) (3.1) 

[b (L) means  lattice vectors of the b lattice] where in our 
case b (L) are the unit vectors of the hexagonal structure 
{a(100) and a( - ½, ]//3/2, 0) in b subspace [(001) plane] }. 

The solutions are O lines in the z direction with the 
xy positions (column vectors): 

X(0) - _ ( ( a / Z )  I (3a/4) cotan (O/2)-(a/4)'] 
\ - ( a /Z )co t an  (0/2) ] (a/4) cotan (O/2)-(3a/4)J 

and all their linear combinations. (For the positions of 
the O lines see Fig. 3.) These O lines are separated by 
bisecting cell walls. The cut of the boundary with the 
cell walls represents the dislocation network, the Bur- 
gers vectors of which are attributed from the b net by 
means of the duality relations [(I), §9.1]. 

From the new point of view we imagine the situation 
in the following way: we assume the bicrystal to be in 
the actual state, the 10 ° twist, the type of boundary not 
yet being decided. The crystal now 'feels around'  for 
some energetically preferred state and finds it to be the 
state of the perfect crystal, which would be attained by 
a - 1 0  ° rotation (of crystal 2). However, the crystal 
cannot twist, so it changes the twist from the preferred 
state to the actual state into a continuous dislocation 
distribution, such that the neutral lines come to lie 
parallel to the O-lattice unit vectors. The preferred 
state, the state of the perfect crystal, is optimally 
realized at the O elements (coincidence of equivalent 
positions). Then, the continuous dislocations become 
grouped into discrete dislocations between the rows 
of O points. It is like curtains being drawn apart and 
packed between the rows of O points, these packed 
curtains being the discrete dislocations. The uncovered 
'windows' around the O points up to the dislocations 
show now the energetically preferred state, i.e. the state 
of the perfect, albeit somewhat elastically distorted, 
crystal (Fig. 3). The O-lattice procedure guarantees that 
the Burgers vectors of the now discrete dislocations are 
translations which conserve the state of the perfect 
crystal, i.e. they are translation vectors of the perfect 
crystal. The O-lattice equation (3.1) shows that the O 
element is located at the tip of a vector of the displace- 
ment field of A, which is a translation vector conserving 
the state of the perfect crystal (crystal 1). 

The dislocation network which is needed for the 
local conservation of the structure of the perfect 
crystal is the 'primary' dislocation network. The parts 

b - SPACE: 

\ \  \ \ , , \  
\ \ ° ' V k  \ 

\ \ \ ~ \  : 
\ \ \ \ \  

\ \ \ \ \  
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Fig. 3. Grouping of continuous dislocations to form discrete ones and forming dislocation reactions. The p~ctt~ re is an illustration of the idea 
rather than a description of the actual process, while the latter is considered to be instantaneous. 
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of the O elements (O points, O lines, O planes) in the 
boundary are the locations where this structure is 
optimally conserved. The primary dislocation network, 
as closely spaced as it may be, is essentially always 
present. It dominates the relaxation in the boundary. 
For a discussion on relaxation see Appendix B.) It may 
happen that for large deviations in the relative orien- 
tation, different unit cells in the two crystals have to be 
chosen so that the transformation A becomes a combi- 
nation of a unimodular transformation with a rotation, 
or in phase boundaries the relation may be different 
again, but all these transformations can be represented 
in an infinite number of ways by continuous dislocation 
distributions where the conserved (preferred) structure 
picks out the appropriate distribution and groups the 
continuously distributed dislocations into discrete 
dislocations. 

To summarize: instead of starting with the perfect 
crystal and forming the actual state of the bicrystal, we 
conceptually start with the actual bicrystal and 'locate' 
the state of the perfect crystal. The displacement field 
of the transformation (A) which is needed to attain the 
actual state, starting from the preferred state, repre- 
sents an infinite number of virtual continuous disloca- 
tion distributions. The locations where the perfect 
crystal is best realized in the boundary (O elements) 
and the translations which reproduce the structure of 
the perfect crystal (b lattice) determine the choice of the 
appropriate continuous dislocation distribution. The 
discrete dislocation network is then obtained by 
grouping the continuously distributed dislocations be- 
tween the O elements. 

Hence, the dislocation network is an intermediate 
state between: (a) the state of two crystals put together 
without any atomic forces acting (continuous displace- 
ment field) and (b) the state of the perfect crystal, which 
would be fully attained if all the dislocations had run 
out of the boundary. 

3.2. The secondary level 
3.2.1. The conservation of a coincidence pattern 

While on the primary level the crystal structure itself 
is locally conserved, the secondary level is determined 
by the local conservation of a whole relaxation pattern, 
e.g. a coincidence pattern. [For recent experimental 
evidence of the existence of coincidence patterns see 
Herrmann, Gleiter & B~iro (1976).] The O-lattice pro- 
cedure is exactly the same as on the primary level, only 
the crystal lattices are replaced by DSC lattices (see 
below), and the relative orientation of the crystals is 
replaced by the deviation from the coincidence orien- 
tation [Warrington & Bollmann (1972)]. 

When two crystals are in a coincidence relation, the 
pattern formed by the lattice points is periodic with the 
period determined by the coincidence sites (27= 13 
means that the period contains 13 crystal units). If 
crystal lattice 2 is translated with respect to crystal 
lattice 1, the size of the period will remain the same, 
but the motif of the pattern will change. Certain specific 

translations, however, will reproduce the motif of the 
departure. The DSC lattice is formed by all those 
translations which reproduce the configuration of the 
starting motif. The DSC lattice is also called the 'com- 
plete pattern shift lattice', where D stands for displace- 
ment of crystal lattice 2 with respect to crystal lattice 1, 
S for shift of the pattern and C for complete. While the 
points of the coincidence site lattice are contained in 
both crystal lattices, the DSC lattice is a lattice which 
contains both crystal lattices (Fig. 4). The translation 
vectors of the DSC lattice are possible Burgers vectors 
of secondary dislocations. The DSC lattice is closely 
related to the reciprocal coincidence site lattice 
(Grimmer, Bollmann & Warrington, 1974; Grimmer, 
1974). 

The procedure for determining the secondary dislo- 
cation network starts with the DSC lattice 1, into which 
crystal lattice 1 is embedded, and the DSC lattice 2 
which contains crystal lattice 2. In the coincidence 
orientation the two DSC lattices coincide. The situa- 
tion is fully analogous to that of the perfect crystal. On 
deviation from coincidence orientation, the DSC lattice 
2 deviates in orientation from DSC lattice 1. Here again 
the displacement field of that deviation can be decom- 
posed into the appropriate sets of continuous disloca- 
tions and located and bundled according to the O-lat- 
tice procedure. The Burgers vectors are in this case 
vectors of the DSC lattice. 

Since the translation vectors of both crystals are 
always contained in the DSC lattice, the secondary dis- 
location network can be formed by dislocations with 
Burgers vectors out of the crystal lattices, although 
these Burgers vectors may not be the smallest possible 
ones. An example in stainless steel was discussed by 
Bollmann, Michaut & Sainfort (1972). The fact that 
crystal dislocations can act as secondary dislocations 
seems to be related to the low stacking-fault energy of 
stainless steel. 

3.2.2. The conservation of a crystallographic axis 
Now, the case is discussed which actually started 

this whole research on continuous dislocation distri- 
butions. It is the problem of a relative orientation such 
that a crystallographic axis is nearly common to both 
crystals but that the relaxation pattern for the closest 
rotation on the crystallographic axis is not periodic. It 
is the case which corresponds to the 'plane matching' 
model of Pumphrey (1972). Warrington & Boon (1975) 
have calculated the probabilities for relative orienta- 
tions of the two crystal lattices falling into a range 
where a common, low-index crystallographic axis 
could be conserved. 

In order to fix our ideas, let us assume a rotation of 
0=20 ° around the [001] axis in the primitive cubic 
(p.c.) structure. This orientation is relatively far from 
27= 25, (0= 16.26 °, [001]) and 27= 13 (0= 22.62 ° [001]). 
The DSC lattices of the two coincidence orientations 
are 'layer structures' with layers in the (001) planes 
spaced by a[001]. The layers contain a discrete finer 
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Fig. 4. DSC-lattices for the p.c. structure for Z = 2 5 ,  0 =  16"26 ° and 
S =  13, 0 =  22"62 ° and in between the semicontinuous DSC lattice 
for 0 = 20 °. The cube represents the unit cell of the crystal lattice. 

two-dimensional lattice of points (Fig. 4). Any rotation 
on the [001] axis can be arbitrarily close to a 'rational' 
rotation [tan (8/2)= rational number]. Large S values, 
however, may loose their physical significance since 
the crystal may not be able to distinguish energetically 
between a periodic pattern with a large period and one 
which is not periodic at all. The 20 ° rotation is, for ex- 
ample, close to S = 125 (which means that the period 
of the pattern contains 125 crystal units) and close to 

= 149. Hence, in the case of the conservation of the 
common crystallographic axis [001] alone, the DSC 
lattice consists of continuous (001) layers spaced by the 
lattice constant a. Continuous layers would indicate 
the presence of 'continuous' dislocation distribution. 

The problem of the present research was to investi- 
gate the meaning of these continuous dislocations. 
More specifically we ask in the case of a rotation of 8 ° 
in the crystallographic axis combined with a rotation 
of 0 ° perpendicular to that axis for the difference in the 
relaxation pattern between the state where the axis is 
conserved and that where it is not conserved, or con- 
cretely: how can these two states be distinguished in 
an electron micrograph for example? 

We describe the solution along two parallel lines. 
On the first line we determine the O lattice of the total 
rotation R(0t) = R(0)R(8), which furnishes the answer in 
the case where the 8 axis is not conserved. The second 
line is that with the semicontinuous DSC lattice, which 
furnishes the result when the 8 axis is conserved. 

If the axis of the rotation is not perpendicular to a 
crystallographic plane which contains a flat b net 
composed of possible Burgers vectors [e.g. the (001) or 
(111) plane in the f.c.c, structure], the b net, which has 
to approximate the b subspace (here the plane perpen- 
dicular to the rotation axis), becomes stepped. The 

steps in the b net represent an additional set of disloca- 
tions which we call 'b-step dislocations'*). We discuss 
first these b-step dislocations (Fig. 5). 

b-step dislocations 
First line. With R(0) in the [001] axis and R(0) in the 

[100] axis, the angle 0, of the total rotation R(0)R(0) 
is given by: 

cos (0J2) = cos (8/2) cos (0/2), (3.3) 

and the rotation axis by 

[cotan (0/2), - 1,cotan (0/2)] (3.4) 

which means that the angle between the x axis and the 
rotation axis projected on the xy plane is - (8/2)  and 
correspondingly in the yz plane with respect to the z 
axis, -(0/2).  

The plane perpendicular to this axis through the co- 
ordinate origin is the b subspace. This inclined plane 
of the b subspace has to be intersected by the horizontal 
layers of the b lattice (which looks the same as the 
crystal lattice 1). The intersecting lines have to be 
transformed by [ I - R - 1 ( 8 0 ] -  z which is a rotation by 
[(Ot/2)-(rc/2)] around the rotation axis of the total 
rotation and an expansion by 

(½)2 cotan 2 +(½)2 = 1 
2sin(0J2)" (3.5) 

The lines so obtained, together with the rotation 
axis, determine a set of parallel O planes, The intersec- 
tion of the cell walls (intermediate planes between the 
O planes) with the grain boundary are the b-step dislo- 
cations. In our example the central O plane passes 
through the x axis and is inclined by (0/2) away from 
the z axis towards the negative y axis (Fig. 6). 

Second line. On the second line with the semicon- 
tinuous DSC lattice, exactly the same procedure can 
be followed, only that here the axis of rotation is the 
[100] axis of the R(0) rotation, and the rotation angle 
is 0 instead of 0t. The result is the same as in the first 
case (Fig. 7). [It is also the same for both cases (but 
different from the above example) if the 0 axis has an 

* In (I), p. 129, these were called 'foreign dislocations'. That nota- 
tion, however, is somewhat confusing and vague since the b-step dis- 
locations are intrinsic to the boundary and not foreign to it. 
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o-o-o- --b- 
SUBSPACE (PLANE) 

Fig. 5. Nota t ion  for different features in the b space. 
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arbitrary orientation in space.] The b-step dislocations 
are visible in electron micrographs as sets of parallel 
lines in the boundary. 

Hence, the existence of the b-step dislocations does 
not tell whether a common crystallographic axis is 
conserved. It shows only that the rotation axis is close 
to a low index crystallographic axis. (i.e. an axis per- 

pendicular to a flat b net). Energetically it is expected 
that these additional b-step dislocations will anyhow 
increase the boundary energy compared to a rotation 
exactly in the crystallographic axis, whether the com- 
mon axis is conserved or not. Now we discuss the 
details of the relaxation pattern apart from the b-step 
dislocations. 

z 
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(c) (d) 
Fig. 6. Determination of the b-step dislocations starting from the total rotation. (OP = O plane, CW = cell wall). The intersections of the 

grain boundary with the cell walls are the dislocations. (a) Perspective view in crystal space. (b) Top view in crystal space. (c) Perspective 
view in b space. (d) Top and front view in b space. 
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Fig. 7. Determination of the b-step dislocations starting from the DSC lattice. Here, the rotation axis is the x axis. (See caption of Fig. 6.) 
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Relaxation pattern 
First line. The total O lattice is calculated by the 

standard procedure for the primary dislocation net- 
work. The b lattice points of the b net are projected* 
on the b subspace, then transformed by [I - R(0t)- 1] - 1, 
and through the resulting points in the b subspace, the 
O lines are placed in the direction of the inclined axis 
0t. The O-lattice cell structure is then a tube structure 
in the direction of the rotation axis, sectioned by the 
planes of the b-step dislocations. A boundary placed 
perpendicularly to the rotation axis (tube axis) is, 
roughly speaking, a superposition of a twist (0) and a 
tilt (~) boundary. 

Second line. Here we have to follow the O-lattice 
procedure with the semicontinuous DSC lattice. The 
DSC lattice seen as a b lattice means that the Burgers 
vectors in the continuous layers are continuous, while 
out of them they are discrete. In the p.c. structure the 
discrete Burgers vectors are of the [001] type. The b 
secondary subspace is, in our example, the (100) plane. 
Here the O lattice tube structure lies in the [100] 
direction. The continuous DSC lattice can be con- 
sidered as the limiting case of a discrete lattice and so 
can the O lattice (Fig. 8). If the boundary is placed 
passing through the [100] axis, but otherwise in an 
arbitrary orientation, it must contain ledges. Between 
the ledges the primary O lattice is a tube structure 
parallel to the z axis corresponding to the 0 rotation. 

These ledges are the answer to our question concern- 
ing the difference between the conserved or not-con- 
served axis. If the axis is not conserved, a corresponding 
boundary can be smooth. In the first case the virtual 
continuous dislocations representing the displacement 
field of the difference rotation are continuously distrib- 
uted, in the second case they are not grouped into 
discrete dislocations anymore, but aligned on the walls 

* In the comparison between the two states: 'crystallographic axis 
conserved or not' it has proved to be crucial that the b lattice points 
are projected into the b subspace in the direction of the conserved 
axis, which in our case is not perpendicular to the b subspace. 

of the ledges which are located between the b-step 
dislocations. 

Hence, a discrete b lattice or DSC lattice means 
grouping of the continuous dislocations to form dis- 
crete dislocations, a semicontinuous DSC lattice 
means an alignment of the continuous dislocation on 
ledges. Whether this kind of relaxation is actually 
energetically preferred has to be decided from observa- 
tions. 

Summary 
The link between the continuous displacement field 
in the interface between two bodies which are related 
by a homogeneous linear transformation, and the 
discrete dislocation network between two correspond- 
ingly joined crystals, is given by the possibility of 
representing any such displacement field in an infinite 
number of ways by continuous distributions of dislo- 
cations. The discrete dislocations can then be under- 
stood as bundles of continuous dislocations. The 
specific continuous dislocation distribution and its 
grouping into discrete dislocations is governed by 
conservation principles. These principles are, on the 
primary level, the local conservation of the crystal 
structure and, on the secondary level, the local conser- 
vation of an energetically preferred relaxation pattern. 

The O-lattice theory is discussed in relation to the 
continuous dislocation distributions for the primary 
and the secondary level. The aspect of the O-lattice 
theory has changed insofar as before it was thought 
that the crystals either conserve locally the crystal 
structure or at least a common substructure (coin- 
cidence site lattice, common axis). Now the 'either/or' 
has changed to an 'as well as'. The primary condition 
of the local conservation of the crystal structure is 
considered to govern any state, while the secondary 
level appears occasionally in addition to the primary 
one. 

A special problem is a state where the relative orien- 
tation of the two crystal lattices is such that they have 
nearly a low index crystallographic axis in common, 
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Fig. 8. Configuration of the grain boundary (GB) when a common crystallographic axis is conserved. (BSD = b-step dislocation, CD = con- 
tinuous dislocation). The continuous dislocations are aligned on ledges. 
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but that the closest state with the common axis is no 
coincidence state (no periodic relaxation pattern). It is 
shown that, if the state of the common axis is not 
preferred, the boundary is expected to be smooth while 
in the case of the conserved axis, a boundary in a 
general orientation is expected to show ledges, where 
in one type, ledge-walls, the continuous dislocations are 
aligned, but not grouped to form discrete dislocations. 

Although the theorem has been treated in a formal 
mathematical way there may be some physical signif- 
icance involved. The dislocation network (primary and 
secondary) in the boundary is determined by the ener- 
getically favorable feature to be conserved. This feature, 
however, may change, for example, with temperature, 
so that at low temperatures a relatively high I; value 
of a coincidence orientation may be conserved while at 
higher temperatures it may no longer be favoured. At 
that moment the discrete secondary dislocation net- 
work would spread out and eventually form another 
dislocation network related to another neighbouring 
2; value (Gleiter, 1976). Similar events may happen in a 
boundary on a phase change or in recrystallization 
(Balluffi, 1976). Our theorem may help to obtain a 
better quantitative understanding of such changes. 

C O N T I N U O U S  D I S T R I B U T I O N  O F  D I S L O C A T I O N S  IN I N T E R C R Y S T A L L I N E  B O U N D A R I E S  

N =  { sin(0--70- + ~ )  - c ° s  (0 + ~ b ) )  

\cos( ) sin(0) 
The displacement field of the rotation is 

The author Would like to thank the Battelle Institute 
for the financial support of this work and Dr D. H. 
Warrington for inspiring discussions. 

APPENDIX A 
Decomposition of a rotation field into two sets of 

continuous dislocations 

The problem is treated two-dimensionally. We assume 
a structure given by the following structure matrix (the 
column vectors of which are the unit vectors of crystal 
1, in orthonormal coordinates) (for ~ = 30 ° see Fig. 3): 

( ~ ' - s i n ~ )  = BtZ). (A1) S =  I 
I. COS 

¢ = 0 represents the p.c. structure. 
The O lattice then becomes: 

X(°)= [ I -  R(0)-  1] - IB(r) = T -  1B(L) (A2) 

with T -1 from (3.1) 
X(O) 

sin + cotan( ) os 
0 1 l c o t a n ( 0 )  , - c o t a n ( ~ ) s i n O + ~ c o s  ' 

(A3) 

The neutral lines of the shear transformations are 
now placed into these O-lattice unit vectors. Unit 
vectors perpendicular to these vectors are the normal 
on the shear planes. They are represented as row vec- 
tors in the matrix N 

(A4) 

( 1-c°s°sin 0 sin0)cos 0 
) (  sin (~)  - c o s  ( ~ ) ~  

 sin(  0 
According to (2.13) 

W N = T  (A6) 

o r  

W = TN-  1; (A7) 

it follows that: (0sint / sin/ ttan ) 
W= 

COS ~/  sin(°) 
Now the two shear fields are given by: 

(A8) 

{F2sin2(0/2) l F - s i n 0  ] )  
(I - n r 1) = [L  + sin 0 tan ~k ~- 2 sin2 (0/2) tan 

\ 0 0 
(A9) 

f - s i n  0 tan ~ - 2  sin2 (0)  tan ~b t 

sin 0 2 sin 2 

which obviously sum to the rotation field (A5). 
The grouping procedure and the attribution of the 

Burgers vectors is shown in Fig. 3 for 0 = 30°- 

APPENDIX B 

The relaxation pattern as determined by the O-lattice 
method 

The O-lattice theory is a purely geometrical procedure. 
Hence, it is not to be expected to obtain a fully realistic 
picture of the atomic arrangement in the boundary. 
This theory is a kind of a 'crystallography' of the 
boundary, it furnishes an 'ideal' boundary which is 
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thought to be a reference system to a real boundary, 
like an ideal crystal is a reference system to the real 
crystal. Starting from an ideal model of a boundary, 
which, however, has to be close enough to the real ar- 
rangement, new concepts, such as, for example, 
boundary defects can be formulated. 

As an example, we show a tilt boundary in the 27 = 25 
case of the p.c. structure (0= 16.26 °, [001]). We con- 
sider the two crystal lattices (without atoms) as inter- 
penetrating and determine the O lattice cell structure, 
Fig. 9. Every O point is an origin onwards from which 
the closest neighbour points in both lattices are related 
by the 16.26 ° rotation. We connect the two neighbour 
points by a bar. Hence, every bar has a lattice 1 and a 

Fig. 9. O-lattice of the primitive cubic structure (27=25, 0 =  16"26 °, 
[001J-axis). The closest neighbour points in the two lattices are 
connected by a bar. 

(a) 

Fig. i0. (a) Stepped tilt boundary in the O lattice of Fig. 9. The 
dislocations appear at the cell walls. (b) Same boundary as in (a). 

lattice 2 end. A bar represents the position of a single 
atom. 

Now, we decide on the path of the boundary through 
O elements and determine a boundary zone of one O 
lattice unit width to both sides. The atoms are then 
placed, on the crystal 1 side of the boundary up to the 
limit of the boundary zone, exactly into the lattice 1 
positions, and accordingly on the crystal 2 side. 

In the boundary zone the atoms are placed on the 
bar according to 

x =  x ~1~ + ,~[x ~2~- x ~t~] (B1) 

where 2 varies linearly with the position of the centre 
of the bar within the boundary zone (2 = 0 at the crystal 
1 zone limit, 2 = 0.5 on the boundary plane and 2-- 1 at 
the crystal 2 zone limit). The result is shown in Fig. 
10(a). The dislocations appear automatically at the 
O-lattice cell walls and the Burgers vectors are those 
which are attributed by the duality relations. The coin- 
cidence sites are positions belonging to lattice 1 as well 
as to lattice 2 when extrapolated from both sides of the 
boundary zone. Fig. 10(b) shows the same picture 
without the reference frame. This procedure can also 
be applied for a twist boundary perpendicular to the 
O lines or any other boundary orientation by choosing 
the width of the boundary zone appropriately. 

This linear model has the following properties. (1) 
It can be constructed for any boundary. (2) It has 
exactly the density of the perfect crystal (which may 
not be realistic). However, the atoms do not excessively 
overlap nor do they leave large holes. (3) The linear 
dependence of 2 and the straight boundary zone limit 
may not be fully realistic either. 
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